1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
//! Common functions.
/// Common thermal functions.
pub mod thermal;
pub use native::*;
// For use in Rust
//
// - Collect into a module to improve code organization, but immediately re-export.
//
// - Each function simply calls its inline analogue with the sole objective of not
// inlining code when not necessary. The inline functions are still available to
// the crate for more specialized use.
mod native {
use super::inlines;
use crate::{Num, R};
/// Relativistic energy squared.
///
/// As a function of the momentum `p` and mass `m`,
/// `p^2 + m^2`.
pub fn energy_squared<T: Num>(p: R, m: T) -> T {
inlines::energy_squared(p, m)
}
/// Relativistic energy.
///
/// As a function of the momentum `p` and mass `m`,
/// `sqrt(p^2 + m^2)`.
pub fn energy<T: Num>(p: R, m: T) -> T {
inlines::energy(p, m)
}
}
// For use in other languages, e.g. C/C++/Python
//
// - Re-export at crate::ffi, since symbols need to be unmangled anyway and the
// namespace will not be preserved.
//
// - Here too each function calls its inline analogue, but the objective is to
// switch from generic to concrete argument types so that the functions can
// be compiled into a C dynamic library. To do so, we need to double their
// number (one function for real arguments, another for complex arguments).
pub(crate) mod ffi {
use super::inlines;
use crate::R;
pub use super::thermal::ffi::*;
#[no_mangle]
pub extern "C" fn energy_squared(p: R, m: R) -> R {
inlines::energy_squared(p, m)
}
#[no_mangle]
pub extern "C" fn energy(p: R, m: R) -> R {
inlines::energy(p, m)
}
}
// For internal use only
//
// - Here we define the building blocks for the other functions. This module
// serves two purposes: to hold inlined functions and to provide a single
// source of truth for the actual mathematical expressions
pub(crate) mod inlines {
use crate::{Num, R};
#[inline(always)]
pub fn energy_squared<T: Num>(p: R, m: T) -> T {
m * m + p * p
}
#[inline(always)]
pub fn energy<T: Num>(p: R, m: T) -> T {
energy_squared(p, m).sqrt()
}
}