1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
pub use native::*;
// For use in Rust
//
// - Collect into a module to improve code organization, but immediately re-export.
//
// - Each function simply calls its inline analogue with the sole objective of not
// inlining code when not necessary. The inline functions are still available to
// the crate for more specialized use.
mod native {
use super::inlines;
use crate::{Num, R};
/// The relativistic fermi momentum `sqrt(mu^2-m^2)` as a function of
/// the mass `m` and chemical potential `mu`.
pub fn fermi_momentum(m: R, mu: R) -> R {
inlines::fermi_momentum(m, mu)
}
/// The [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics).
///
/// As a function of the energy `en`, inverse temperature `beta` and
/// chemical potential `mu`.
pub fn fermi_distribution<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
inlines::fermi_distribution(en, beta, mu)
}
/// The [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics)
/// at zero temperature.
///
/// As a function of the energy `en` and chemical potential `mu`.
pub fn fermi_distribution_zero_temp<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
mu: T2,
) -> T1 {
inlines::fermi_distribution_zero_temp(en, mu)
}
/// The [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics),
/// summed over positive and negative chemical potential.
///
/// As a function of the energy `en`, inverse temperature `beta` and
/// chemical potential `mu`. Equal to
/// `fermi_distribution(en, beta, mu) + fermi_distribution(en, beta, -mu)`.
pub fn fermi_distribution_double<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
inlines::fermi_distribution_double(en, beta, mu)
}
/// The [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics),
/// summed over positive and negative chemical potential, at zero temperature.
///
/// As a function of the energy `en` and chemical potential `mu`. Equal to
/// `fermi_distribution_zero_temp(en, mu) + fermi_distribution_zero_temp(en, -mu)`.
pub fn fermi_distribution_double_zero_temp<
T1: Num + std::ops::Sub<T2, Output = T1>,
T2: Num,
>(
en: T1,
mu: T2,
) -> T1 {
inlines::fermi_distribution_double_zero_temp(en, mu)
}
/// The [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics),
/// at zero chemical potential.
///
/// As a function of the energy `en` and inverse temperature `beta`.
pub fn fermi_distribution_zero_chempot<T: Num>(en: T, beta: R) -> T {
inlines::fermi_distribution_zero_chempot(en, beta)
}
/// The [Bose-Einstein distribution](https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_statistics).
///
/// As a function of the energy `en`, inverse temperature `beta` and
/// chemical potential `mu`.
pub fn bose_distribution<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
inlines::bose_distribution(en, beta, mu)
}
/// The [Bose-Einstein distribution](https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_statistics)
/// at zero chemical potential.
///
/// As a function of the energy `en` and inverse temperature `beta`.
pub fn bose_distribution_zero_chempot<T: Num>(en: T, beta: R) -> T {
inlines::bose_distribution_zero_chempot(en, beta)
}
}
// For use in other languages, e.g. C/C++/Python
//
// - Re-export at crate::ffi, since symbols need to be unmangled anyway and the
// namespace will not be preserved.
//
// - Here too each function calls its inline analogue, but the objective is to
// switch from generic to concrete argument types so that the functions can
// be compiled into a C dynamic library. To do so, we need to double their
// number (one function for real arguments, another for complex arguments).
pub(crate) mod ffi {
use super::inlines;
use crate::R;
#[no_mangle]
pub extern "C" fn fermi_momentum(m: R, mu: R) -> R {
inlines::fermi_momentum(m, mu)
}
#[no_mangle]
pub extern "C" fn fermi_distribution(en: R, beta: R, mu: R) -> R {
inlines::fermi_distribution(en, beta, mu)
}
#[no_mangle]
pub extern "C" fn fermi_distribution_zero_temp(en: R, mu: R) -> R {
inlines::fermi_distribution_zero_temp(en, mu)
}
#[no_mangle]
pub extern "C" fn fermi_distribution_double(en: R, beta: R, mu: R) -> R {
inlines::fermi_distribution_double(en, beta, mu)
}
#[no_mangle]
pub extern "C" fn fermi_distribution_double_zero_temp(en: R, mu: R) -> R {
inlines::fermi_distribution_double_zero_temp(en, mu)
}
#[no_mangle]
pub extern "C" fn fermi_distribution_zero_chempot(en: R, beta: R) -> R {
inlines::fermi_distribution_zero_chempot(en, beta)
}
#[no_mangle]
pub extern "C" fn bose_distribution(en: R, beta: R, mu: R) -> R {
inlines::bose_distribution(en, beta, mu)
}
#[no_mangle]
pub extern "C" fn bose_distribution_zero_chempot(en: R, beta: R) -> R {
inlines::bose_distribution_zero_chempot(en, beta)
}
}
// For internal use only
//
// - Here we define the building blocks for the other functions. This module
// serves two purposes: to hold inlined functions and to provide a single
// source of truth for the actual mathematical expressions
pub(crate) mod inlines {
use crate::low_level::common::inlines::{
statistic_distribution_exponential, statistic_distribution_exponential_zero_chempot,
};
use crate::{Num, R};
#[inline(always)]
pub fn fermi_momentum(m: R, mu: R) -> R {
(mu * mu - m * m).sqrt()
}
#[inline(always)]
pub fn fermi_distribution<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
(statistic_distribution_exponential(en, beta, mu) + 1.).inv()
}
#[inline(always)]
pub fn fermi_distribution_zero_temp<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
mu: T2,
) -> T1 {
if en.re() > mu.re() {
T1::zero()
} else {
T1::one()
}
}
#[inline(always)]
pub fn fermi_distribution_double<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
(statistic_distribution_exponential(en, beta, mu) + 1.).inv()
+ (statistic_distribution_exponential(en, beta, -mu) + 1.).inv()
}
#[inline(always)]
pub fn fermi_distribution_double_zero_temp<
T1: Num + std::ops::Sub<T2, Output = T1>,
T2: Num,
>(
en: T1,
mu: T2,
) -> T1 {
fermi_distribution_zero_temp(en, mu) + fermi_distribution_zero_temp(en, -mu)
}
#[inline(always)]
pub fn fermi_distribution_zero_chempot<T: Num>(en: T, beta: R) -> T {
(statistic_distribution_exponential_zero_chempot(en, beta) + 1.).inv()
}
#[inline(always)]
pub fn bose_distribution<T1: Num + std::ops::Sub<T2, Output = T1>, T2: Num>(
en: T1,
beta: R,
mu: T2,
) -> T1 {
(statistic_distribution_exponential(en, beta, mu) - 1.).inv()
}
#[inline(always)]
pub fn bose_distribution_zero_chempot<T: Num>(en: T, beta: R) -> T {
(statistic_distribution_exponential_zero_chempot(en, beta) - 1.).inv()
}
}